Like what you've read?

On Line Opinion is the only Australian site where you get all sides of the story. We don't
charge, but we need your support. Here�s how you can help.

  • Advertise

    We have a monthly audience of 70,000 and advertising packages from $200 a month.

  • Volunteer

    We always need commissioning editors and sub-editors.

  • Contribute

    Got something to say? Submit an essay.

 The National Forum   Donate   Your Account   On Line Opinion   Forum   Blogs   Polling   About   
On Line Opinion logo ON LINE OPINION - Australia's e-journal of social and political debate


On Line Opinion is a not-for-profit publication and relies on the generosity of its sponsors, editors and contributors. If you would like to help, contact us.


RSS 2.0

Ocean acidification: cooler or not, reason to take CO2 seriously

By Steven Watkinson - posted Friday, 11 July 2008

There is a rumour afoot among the global warming sceptics: a cooler global temperature trend since 1998 means that the IPCC is losing face, so the IPCC is moving ground from using temperature increase as justification for CO2 thriftiness to another threat - ocean acidification.

Bob Carter has argued this here at On Line Opinion. At Jennifer Marohasy's sceptically inclined blog, contributor Paul Biggs has twice this year also suggested as much.

There may be a movement in the debate, but in my view, ocean acidification may genuinely be the biggest danger facing humankind.


Wikipedia has a useful primer on the topic. (It is also surprisingly short, probably due to the very intermittent publicity the topic receives compared to global warming.) The Royal Society study of 2005 gave the topic some momentum, and its lengthy report is not too difficult to read. Shorter summaries have been published by the Australian Department of Environment's Antarctic Division, the Australian Academy of Science, and various other international bodies. Here's my quick review of the chemistry, as culled from those links:

  • the average pH of surface ocean water has dropped over the last two centuries by about 0.1. Being a logarithmic scale, this equates to increased acidity of about 30 per cent. (Pure water is neutral with a pH of 7; oceans on average used to have a pH of 8.2.);
  • estimates based on "business as usual" CO2 emissions are that by 2100 there could be a further drop in average ocean pH of 0.3 to 0.5, which at the top of that range equates to a 300 per cent increase in acidity. (Although even then the ocean is actually still alkaline.);
  • with any substantial drop in pH, it will take thousands of years for natural ocean chemistry to get it back to pre-industrial levels;
  • ocean pH is believed not to have been as low as even current levels for a very long time (hundreds of thousands, if not millions, of years.);
  • crucially, changes of as little as 0.2-0.3 units can hamper the ability of key marine organisms such as corals and some plankton to calcify their skeletons, which are built from pH-sensitive carbonate minerals. (Calcium carbonate shells can be either in the form of calcite or aragonite, with the latter being more sensitive to lower pH.)

This chemistry seems well understood. It's the effect on individual species of algae, other plankton, coral, molluscs and crustaceans, as well as the overall ecological consequences, that is trickier to quantify. No one is saying the oceans will become utterly sterile: sea life of some kind has clearly survived much higher levels of atmospheric CO2 since the earth began. But ocean chemistry has been stable for a very long time, while recent ice ages have come and gone; now it is undergoing major change.

A major concern is the effect on coral reefs. Laboratory tests indicate that coral polyps might not actually die, but simply stop producing their hard shell and change in appearance to something resembling sea anemones. The problem is, it's the hard shell that creates and maintains a reef. Algae that are important for coral may not do well either. Just this week, there's a report that corals indicate the ocean may be acidifying faster than expected. Australians who value the Great Barrier Reef have good reason to worry: cold water takes in CO2 faster, and the Southern Ocean already has what scientists describe as "low saturation" with respect to aragonite. (Basically, the lower the saturation, the bigger the problem for calcifying creatures). Increasingly undersaturated waters are expected to spread far north during this century (click on the map at the top of this page, and scroll down).

Even if you are prepared to live with the possible loss of coral reefs, another major concern is the effect on the food chain. It has been said that only ten or so of the thousands of calcifying organisms have been tested for sensitivity to increased acidity, and some clearly do worse than others. Pteropods (small swimming molluscs eaten by many types of fish) appear to be particularly sensitive, and scientists worry that they will be in real trouble in only 50 year's time.

As this article says:


The demise of polar pteropods could provoke a chain reaction of events through complex ocean ecosystems. It is known for instance that pteropods are eaten by organisms ranging in size from zooplankton to whales and including fish. For instance, North Pacific salmon include pteropods as part of their diet.

Indeed, one researcher is quoted in Wikipedia as saying the loss of them in the food chain would be "catastrophic". Other creatures appear especially sensitive to a combination of higher acidity and warmer water.

Sea urchins are in this category. Thus if the climate does become warmer, regardless of the cause, this may well increase the problem of acidification for some species.

  1. Pages:
  2. Page 1
  3. 2
  4. All

Discuss in our Forums

See what other readers are saying about this article!

Click here to read & post comments.

17 posts so far.

Share this:
reddit this reddit thisbookmark with Del.icio.usdigg thisseed newsvineSeed NewsvineStumbleUpon StumbleUponsubmit to propellerkwoff it

About the Author

Steven Watkinson is a Brisbane based lawyer with wide ranging interests, including science. He obtained his law degree from QUT, worked in the 1980s as a legal officer in the RAAF, and returned to live in South East Queensland in the 1990s.

Creative Commons LicenseThis work is licensed under a Creative Commons License.

Article Tools
Comment 17 comments
Print Printable version
Subscribe Subscribe
Email Email a friend

About Us Search Discuss Feedback Legals Privacy