Like what you've read?

On Line Opinion is the only Australian site where you get all sides of the story. We don't
charge, but we need your support. Here�s how you can help.

  • Advertise

    We have a monthly audience of 70,000 and advertising packages from $200 a month.

  • Volunteer

    We always need commissioning editors and sub-editors.

  • Contribute

    Got something to say? Submit an essay.

 The National Forum   Donate   Your Account   On Line Opinion   Forum   Blogs   Polling   About   
On Line Opinion logo ON LINE OPINION - Australia's e-journal of social and political debate


On Line Opinion is a not-for-profit publication and relies on the generosity of its sponsors, editors and contributors. If you would like to help, contact us.


RSS 2.0

Why is nobody talking about safe nuclear power?

By Julian Cribb - posted Wednesday, 4 May 2011

In the wake of the Fukushima nuclear disaster, the most extraordinary thing is the lack of public discussion and the disturbing policy silence – here and worldwide – over safe nuclear energy.

Yes, it does exist.

There is a type of nuclear reactor which cannot melt down or blow up, and does not produce intractable waste, or supply the nuclear weapons cycle. It's called a thorium reactor or sometimes, a molten salt reactor – and it is a promising approach to providing clean, reliable electricity wherever it is needed.


It is safe from earthquake, tsunami, volcano, landslide, flood, act of war, act of terrorism, or operator error. None of the situations prevailing at Fukushima, Chernobyl or Three Mile Island could render a thorium reactor dangerous. Furthermore thorium reactors are cheap to run, far more efficient at producing electricity, easier and quicker to build and don't produce weapons grade material.

The first thorium reactor was built in 1954, a larger one ran at Oak Ridge, USA, from 1964-69, and a commercial-scale plant in the 1980s – so we are not talking about radical new technology here. Molten salt reactors have been well understood by nuclear engineers for two generations.

They use thorium as their primary fuel source, an element four times more abundant in the Earth's crust than uranium, and in which Australia in particular is richly-endowed. Large quantities of thorium are currently being thrown away worldwide as a waste byproduct of sand mining for rare earths, making it very cheap as a fuel source.

Unlike Fukushima, these reactors don't rely on large volumes of cooling water which may be cut off by natural disaster, error or sabotage. They have a passive (molten salt) cooling system which cools naturally if the reactor shuts down. There is no steam pressure, so the reactor cannot explode like Chernobyl did or vent radioactivity like Fukushima. The salts are not soluble and are easily contained, away from the environment and public. This design makes thorium reactors inherently safe, whereas the world's 442 uranium reactors are inherently risky (although the industry insists the risks are very low).

They produce a tenth the waste of conventional uranium reactors, and it is much less dirty, only having to be stored for three centuries or so, instead of tens of thousands of years.

Furthermore, they do not produce plutonium and it is much more difficult and dangerous to make weapons from their fuel than from uranium reactors.


An attractive feature is that thorium reactors are 'scalable', meaning they can be made small enough to power an aeroplane or large enough to power a city, and mass produced for almost any situation.

Above all, they produce no more carbon emissions than are required to build them or extract their thorium fuel. They are, in other words, a major potential source of green electricity.

According to researcher Benjamin Sovacool, there have been 99 accidents in the world's nuclear power plants from 1952-2009. 19 of these have taken human life or caused over $100m in property damage. Such statistics suggest than mishaps with uranium power plants are unavoidable, even though they are comparatively rare. (And, it must be added, far fewer people die from nuclear accidents than die from gas-fired, hydroelectric or coal-fired power generation.)

  1. Pages:
  2. Page 1
  3. 2
  4. All

Discuss in our Forums

See what other readers are saying about this article!

Click here to read & post comments.

15 posts so far.

Share this:
reddit this reddit thisbookmark with Del.icio.usdigg thisseed newsvineSeed NewsvineStumbleUpon StumbleUponsubmit to propellerkwoff it

About the Author

Julian Cribb is a science communicator and author of The Coming Famine: the global food crisis and what we can do to avoid it. He is a member of On Line Opinion's Editorial Advisory Board.

Other articles by this Author

All articles by Julian Cribb

Creative Commons LicenseThis work is licensed under a Creative Commons License.

Photo of Julian Cribb
Article Tools
Comment 15 comments
Print Printable version
Subscribe Subscribe
Email Email a friend

About Us Search Discuss Feedback Legals Privacy